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Spectrum Measurement Using Discrete
Detector Arrays
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Department of Physics, University of Wales Aberystwyth, Aberystwyth, Dyfed SY23 3BZ, UK

Modern spectrometers can produce highly resolved spectra, but this ability has not yet been matched by an ability
to measure them efficiently and for instruments such as a spatially dispersive mass spectrometer it is in the
development of high-performance focal plane detectors (FPDs) where there are enormous gains in efficiency to be
achieved. In this paper two key questions are addressed : (a) how much information does a 1D spectrum or 2D
image contain? ; and (b) can a given FPD capture all this information? In answering these questions, issues of
performance, data quality and technology limitations of 1D and 2D arrays of counters arise naturally. A procedure
is evolved for comparing the performance of a detector and a spectrometer which is not limited to spatially
dispersive instruments. 1998 John Wiley & Sons, Ltd.(
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INTRODUCTION

Much e†ort has been invested in designing spectro-
meters which produce highly resolved spatially dis-
persed spectra and these are traditionally measured
using a single slit detector. This type of detector has the
highest resolving power of any currently available detec-
tor.1 However, a single slit can measure only a tiny frac-
tion of a spectrum at any given time and there has been
a move towards the use of focal plane detectors
(FPDs)1h3 which can measure a whole section of a spec-
trum simultaneously. Clearly, the performance of an
FPD and the spectrometer to which it is Ðtted must in
some way be matched. A high-performance spectro-
meter combined with a low-performance FPD is not a
satisfactory combination (the term FPD is used here to
refer to the combination of a microchannel plate elec-
tron multiplier (MCP) mounted in front of a detector
array).

One way to view a spatially dispersive instrument is
to consider the procedure of producing and measuring a
1D spectrum or 2D image at its basic level of a Ñow of
information from a source to a destination (Fig. 1). The
FPD is the interface or “channelÏ through which the
information Ñows. This model provides a means of
expressing the performance of both the spectrometer
and the FPD and hence facilitates a discussion of rela-
tive performance and the matching of the two. Within
this framework, issues of data quality, performance
(resolving power and dynamic range) and technology
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limitations can be discussed together, not only of 1D
but also of 2D FPDs. Extension to 3D and to time dis-
persion, etc., is also possible.

Clearly, other factors are also of importance to a user,
such as reliability, cost, size and power consumption.
Only issues relating to the information measured are
considered here. The parameters of relevance to this dis-
cussion are resolving power, dynamic range and size of
the active area of the FPD.

A brief illustration and deÐnition of information are
given in the next section and references to texts on
information theory are given. In the subsequent section
the information output by a mass spectrometer is
deÐned by assuming that spectral peaks have a Gauss-
ian proÐle, deÐning a sampling frequency necessary to
recover the spectrum accurately and then using infor-
mation theory to calculate the upper limit of the infor-
mation output rate. The “information rate capacityÏ or
“capacityÏ (the maximum rate at which the FPD can
measure information) of the FPD is also determined.
The expressions derived allow the characterization of
mass spectrometers and FPDs in terms of their capacity
to deliver and transmit information, respectively. It is
assumed that the system is noise free. The e†ect of noise
is examined in the Appendix.

Figure 1. The spectrometer as an information system.
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INFORMATION

It is the function of an FPD accurately to record and
deliver data produced by a spectrometer to the destina-
tion. Information4,5 is a statistical measure whose value
in the present context allows quantiÐcation of the per-
formance of an FPD and a spectrometer and hence a
comparison of the two. Information can be measured in
various units and units of bits are used here. Informa-
tion rate is the rate at which information is transferred.

Information may be deÐned as the minimum number
of binary digits (binits) required to encode data. Con-
sider a measurement of the number of particles (n) in 1 s
incident on a single detector equipped with a sufficiently
large counter and assume that this number is transmit-
ted without error to the destination where the count is
recorded, i.e. there is no noise. The information (I)
obtained from one reading of the counter is

I
n
\ log2(1/p

n
)

where is the probability of measuring n events. If wep
nassume the count is always between 0 and 255 and any

value is equally probable within this range, then p
n
\

for each reading. The information in a reading is1/256

I\ log2
1

(1/256)
\ log2 256 \ log2 28\ 8 bits

This is, of course, the number of binits needed to encode
the data. Since we read the counter every second, I is
the information measured per second. For an array of
M such counters,

I\ ;
M

log2 256 \ 8M

and the average information rate per counter is 8 bits
s~1. The number of binits required to transfer informa-
tion cannot be less than the number of bits of informa-
tion (without information loss) but the binit rate may
greatly exceed the information rate and it may be proÐt-
able to compress the former before transmission.

In the following all logarithms are taken to the base 2
and the subscript 2 is omitted. It is noted that log2 A\
3.32 log10 A.

The above assumption that any reading between 0
and 255 is equally probable will generally result in an
overestimate of the information. It can be shown4,5 that
the average information is a maximum when any count
between 0 and 255 is equally probable. In the discussion
below, this maximum is chosen to characterize the
spectrometer and FPD.

INFORMATION OUTPUT OF A
SPECTROMETER

We consider a spatially dispersive instrument to consist
of three parts : (i) the particle (ion, electron, photon, etc.)
production, dispersion and focusing section ; this will be
referred to for convenience as the spectrometer ; (ii) the
FPD; and (iii) the data storage section. In other words,
we shall regard the spectrometer as the part of the
instrument which produces the spectrum at the focal

plane and the FPD as a separate item responsible for
measuring the spectrum (i.e. detecting the spectrum and
delivering the data to the destination). Thus we can ask
the rate at which the spectrometer is producing infor-
mation and whether the FPD has the capacity or ability
to measure the information at this rate.

Spectrum sampling

Consider a spectrum consisting of a single Gaussian
peak. A Fourier transformation of this peak gives a
continuous frequency spectrum. According to sampling
theory, the sampling frequency should be twice the( fs)maximum frequency present in the signal in order(lmax)to be able to recover the signal exactly. The minimum
sampling frequency is therefore( fsmin)

fsmin\ 2lmax
All the information present in the spectrum is retained if
sampling takes place at a rate Pfsmin .

However, the Fourier transform of the Gaussian peak
has a continuous frequency spectrum and although the
high-frequency components are small they are neverthe-
less present. Unless the incident spectrum proÐle is
limited to frequencies less than or equal to half the sam-
pling frequency, the consequences of sampling at less
than must be considered. Consider a spectrum offsminGaussian peaks. A single Gaussian has the familiar
form

y \ exp([x2/2p2)

and for x \ 2.5p, y \ 0.044. Therefore, a spectrum of
Gaussian peaks on a pitch (separation between the
centres of adjacent peaks) of 5p would overlap to give
an 8.8% valleyÈvery close to the 10% valley deÐnition
of resolution often used in mass spectrometry.

Consider the signal

v(x)\ exp[[n(cx)2]
A
p
x
\ 1

J2n
1
c
B

where c is a constant. The Fourier transform is

X( f ) \ 1
b

exp[[n( f/c)2]
A
p
f
\ 1

J2n
c
B

Hence

p
f
\ 1

2np
x

where b is a constant.
We consider a spectrum of Gaussian peaks with a

pitch of and we sample at a frequency sufficient to5p
x

fscorrectly sample signal frequencies up to The2.5p
f
.

latter value is somewhat arbitrary but includes most of
the frequency spectrum. Therefore,

fs\ sampling frequency\ 1/(sample period)

\ 2 ] 2.5p
f
\ 5/2np

x
B 0.8/p

x
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and

No. of peaks \ FPD length/5p
x

“FrequencyÏ is used here in the sense of spatial sampling,
e.g. in the sense of number of samples per micrometre.
Now, if the spectrum is sampled by an FPD the sample
period is equivalent to the spatial resolution of the
FPD, and since

FPD length\ spatial resolution ] No. of detectors

we have

No. of peaks \FPD length
5p

x
\ FPD length

4 ] spatial resolution

\ No. of detectors
4

Hence using an array of 256 detectors, we can measure
64 resolved peaks and we introduce an error due to
undersampling of a small fraction of the frequency spec-
trum. We can therefore say that almost all the informa-
tion is captured if the spatial resolution is equal to

To a resonable approximation this is equivalent1.25p
x
.

to the condition

FWHM of spectral peak P 2 ] spatial resolution

where FWHM\ full width at half-maximum.
If the peaks in a spectrum are better focused giving

the same mass range but sharper peaks, then the disper-
sion must be increased to bring back to the requiredp

xvalue and information is lost (see below).
As an example, we can consider the case of p

x
\

20 lm, giving c\ 0.02 lm~1 and lm~1.p
f
\ 0.008

We must sample at a frequency of 2] 2.5] p
f
\

5 ] 0.008\ 0.04 samples lm~1\ 1 sample per 25 lm.
The Aberystwyth FPD6 has a spatial resolution of 25
lm and this equates to 1 sample per 25 lm \ 1 sample
per detector. It can therefore sample peaks with p

x
P

20 lm.

Spectrum recovery

In the above discussion, it has been emphasized that the
exact recovery of a spectrum requires that the incident
signal is band limited. Other factors which inÑuence
spectrum recovery must also be pointed out. These
include :

incident spectrum is not measured directly by theI The
array. The spectrum falls on the MCP and each parti-
cle in the spectrum initiates an MCP output pulse
which is recorded by the array. This results in a
widening of the measured peak1 but in line with other
approximations made here it is assumed that there is
no spreading of the incident spectrum before mea-
surement by the FPD.

spectrum is not sampled at a point (idealI The
sampling) but rather the area under the ion intensity
proÐle above a detector site is integrated (integrated
sampling), as shown in Fig. 2. Calculations were per-

Figure 2. Diagram showing the distinction between ideal and
integrated sampling. An ideal sample is taken over an infinitely
small value of dx. An integrated sample is taken by a detector site
over a section of the peak as shown by the shaded areas.

formed using both ideal and integrated sampling and
results were compared.
Figure 3(a) shows a hypothetical spectrum consisting

of 16 Gaussian peaks (of heights 10, 2, 5, 3, 8, 15, 15, 0.5,
30, 30, 0.1, 3, 10, 17, 10 and 3) over 64 electrodes (solid
line) with about a 10% valley between peaks of equal
height, i.e. the sampling frequency satisÐes the criteria
set out above. Figure 3(b) shows the ideally sampled
spectrum and from this the original can be simply
recovered with good accuracy as shown by the circles in
Fig. 3(a). The error in the average peak heights and the
error in the peak centroid were found using Mathcad
and are given in the following section. Figure 3(c) shows
that the lowest intensity peaks are not recovered as
accurately as the higher peaks. However, at a higher
sampling frequency of 1 sample per 18.75 lm the lowest
peaks could be recovered with the better accuracy [Fig.
3(d)]. Since the sampling frequency depends on the
spatial resolution, which is Ðxed, an increase in sam-
pling frequency in practice means increasing If isp

x
. p

xincreased by increasing the dispersion, then information
is lost as a smaller fraction of the spectrum is measured
by the FPD. If is increased at the same dispersion,p

xthen information is lost due to a loss of resolution
(below).

Inaccuracy due to omission of high frequencies. Computa-
tions were carried out in which 16 Gaussian functions
were added to give the hypothetical spectrum shown in
Fig. 3(a). The standard deviation was 20 lm and peaks
were separated by 100 lm. This was then sampled in
two ways : (i) the intensity was calculated at points
spaced at regular intervals of 25 lm (ideal sampling) ; (ii)
the spectrum was sampled by integrating the intensity
above the electrodes (integrated sampling).

In general, ideal sampling at the higher frequency
gave the better recovered spectrum, as would be
expected. When the two smallest peaks are ignored, the
results indicate that if the spectrum is sampled by a dis-
crete FPD (i.e. integrated sampling) at a rate of 1
sample per 18.75 lm (0.053 samples lm~1) then the
error in a peak centroid is about ^0.5 lm and the peak
height was systematically underestimated by about
3.4% whereas the relative peak heights were accurate to
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Figure 3. (a) The solid line is a computed incident spectrum composed of Gaussian peaks of height 10, 2, 5, 3, 8, 15, 15, 0.5, 30, 30, 0.1,
3, 10, 17, 10 and 3. The circles show the spectrum recovered from the ideally sampled spectrum given in (b). (c) The lower part of the
spectrum shown in (a). It can be seen that the lowest intensity peaks are distorted. (d) As (c) except that the incident spectrum is sampled
at intervals of 18.75 mm instead of 25 mm.

better than ^0.5%. At a rate of 1 sample per 25 lm
(0.04 samples lm~1) the error in the peak centroids was
about ^1.5 lm. The peak heights were underestimated
on average by 7.5% (integrated sampling) but the rela-
tive peak heights were accurate to better than ^3.5%.

For the two smallest peaks the errors were several
times larger because of the e†ect of higher frequency
components of the adjacent peaks.

Source information rate

How much information is there in a spectrum? To
answer this question we require the parameters indi-

cated in Table 1. Dispersion in 2D is assumed. Units of
length are micrometres and time is in seconds.

With these parameters, we deÐne the maximum infor-
mation from the source to be(Isource)

Isource\ S log
AFsource

S
B

where

S \ 0.8d
p
x

]
0.8e
p
y

\ (samples in x direction)] (samples in y direction)
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Figure 3.—Continued

For a ID spectrum there is one sample in the y direc-
tion.

Two assumptions made in this deÐnition are
incident spectrum is band limited to frequenciesI the

in which case all the information can beO2.5p
f
,

recovered from an ideally sampled signal.
maximum particle Ñux on to the focal plane isI the

Table 1. Parameters needed in the calculation of the informa-
tion in the incident spectrum

Dimensions of the focal plane of de (d in x direction

the instrument and e in y-direction)

Standard deviation of a single s
x
(x direction)

peak (assumed to be Gaussian) s
y
(y direction)

Maximum particle flux falling on F
source

the focal plane

We assume that the incident Ñux may varyFsource .between 0 and and is evenly distributed acrossFsourcethe focal plane. At any detector the measured number
of counts per second may have any value between 0
and with equal probability.Fsource/SAlthough is a maximum if we assume the ionIsourceÑux to be uniformly distributed across the focal plane

(see Information section above), the latter will not gen-
erally be the case and is inconsistent with the existence
of a spectrum or image. Therefore, is an upperIsourcelimit but as such it provides a useful order of magnitude
basis for comparison with the upper limit of an FPD
(below).

It can be seen that the maximum information rate in
an incident ID spectrum depends on the resolving
power of the spectrometer (through the ion Ñux andp

x
),

the area of the focal plane. It should be emphasized that
the dimensions of the focal plane (d ] e) are indepen-

( 1998 John Wiley & Sons, Ltd. J. Mass Spectrom. Vol. 33, 64È74 (1998)
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dent of the FPD. Ideally, the FPD should span the
whole focal plane if it is to capture all the information
otherwise some of the information output will be lost.

FPD INFORMATION RATE CAPACITY

We consider 1D and 2D FPDs (Fig. 4) and derive an
expression for the amount of information per second
which a 2D FPD could measure. The capacity (the
maximum information rate) of a 1D FPD then follows
simply by setting the number of detectors in the y direc-
tion equal to unity. It is assumed that the 1D FPD is
equipped with J binit counters and the 2D array is
equipped with K binit counters, where J [ K.

To Ðnd the information capacity we proceed as
shown in Table 2. We consider a measurement period of
1 s.

In parallel with the case of the value ofIsource , IFPDdepends on the resolving power of the FPD (through X,

Y , a and b), the dynamic range through the maximum
Ñux allowed by the MCP and the active area of(FFPD)
the FPD.

From the equations in Table 2, it can be seen that
there can be a trade-o† between and K. If isfr frdoubled then the data accumulation time is halved and
K is reduced by 1. Therefore, if we wish to have
counters with a low number of binits (as may be neces-
sary for a high-resolution array), then counters must be
read at a higher rate to ensure that they do not over-
Ñow.

MCP limited count rate

We consider the square 2D array of pulse counters in
Fig. 4. To Ðnd the maximum rate at which the MCP
can deliver pulses to a detector site, we Ðrst calculate
the number of MCP channels above the array. To a
reasonable approximation this is given by ab/P2, where
ab is the area of the array, P is the pitch of the MCP

Figure 4. Schematic diagrams of a one-dimensional and a two-dimensional array.

Table 2. Calculation of the information rate capacity of an FPD

Area of a single detector ab /XY

Max. particle flux on to FPDa F
FPD

¼ab /P2R (1)

P ¼MCP channel pitch ; R ¼MCP channel recovery time

Max. number of counts at each site (measured per second) F
FPD

/XY

Number of counter binits needed per site (K) K ¼log
2

AF
FPD
XY

B
(2)

Frequency (f
r
) at which the counters must be readb f

r
¼F

FPD
/2K (3)

Information capacity of the FPDc (for a 1D FPD, Y ¼1) I
FPD

¼XY log
2

AF
FPD
XY

B

a See the next sub-section.
b See the next but one sub-section
c The assumptions made in the derivation of are similar to those made in the derivation ofI

FPD
The number of sites is XY and at each site counts between 0 and can beI

source
. F

FPD
/XY

stored.
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channels and P2 is taken as the average area occupied
by an MCP channel. Each channel of the MCP requires
a time R to recover between pulses and we take 1/R as
the maximum rate at which it can deliver pulses. There-
fore, the maximum count rate which the MCP can
deliver to the array is

Max. count rate\ FFPD\ ab
P2R (1)

and the maximum count rate per site is

Max. count rate per site\ FFPD
No. of sites

\ FFPD
XY

where a and b are deÐned in Fig. 4, P\ MCP channel
pitch and R\ MCP channel recovery time.

In deriving above, no account is taken of theFFPDrandom time of arrival of particles which limits the par-
ticle Ñux to less than because of the probability ofFFPDtwo particles arriving at the same MCP channel within
the recovery time. The number of counter binits needed
per site (K) if all counters are to just Ðll in 1 s is

K \ log
AFFPD

XY
B

(2)

It should be noted that in the case of a single event
FPD such as a resistive strip,1 X \ Y \ 1 and the
MCP will not limit the upper count rate. The upper
limit in this case is determined by the time taken to
measure an MCP pulse and compute its position.

Array limited measurement

The frequency at which the array must be read isfrdetermined by the size of the counters. For optimum

performance the counters should be read sequentially
with no delay between the reading of the Ðnal counter
and the beginning of the next read cycle.1 Thus an FPD
equipped with K binit counters [where K \

may be read in 1 s without counter over-log(FFPD/XY )]
Ñow if the maximum count rate per site is InFFPD/XY .
the case of a discrete detector array integrated on
silicon, a high resolving power and large counters are
incompatible as too much silicon area would be
required for a high-resolution array. Large counters
would allow a lower read frequency as they could be
read more slowly without danger of overÑow, but if the
count rate is limited by the MCP there is little point in
having large counters which will never be Ðlled (unless
one-shot spectra are required). As an illustration of this,
we consider that in order to read 2a counts per second
from an a binit counter, only a binits per second are
needed. To read 2a counts per second from a b binit
counter (b \ a), each of the sites would have to be read
2a/2b times per second. If a \ 8 and b \ 2, then the read
frequency would have to be 64 times faster.

The expression for is found by dividing thefrmaximum count rate per site by the number(FFPD/XY )
of counts which can be read in one reading of the
counter (2K) and then multiplying this by the number of
counters to be read :

fr \
FFPD
2K

\ ab
P2R] 2K

(3)

Hence all counters can be read and the read cycle
restarted before any counter overÑows. Equations (2)
and (3) relate the properties of the MCP and the array.

Characteristics of a FPD

Table 3 gives a summary of the equations derived and
quantitative results obtained for 1D and 2D FPDs with

Table 3. Summary of equations and results for examples of 1D and 2D FPDs, assuming that the sampling time is 1 s
and the FPD spans the spectrometer focal plane

a ¼b ¼d ¼e ¼6400 mm;

X ¼256; P ¼15 mm;

R ¼10É2 s

Y ¼1 Y ¼256

Instrument parameter 2Da 1D 2D

Focal plane detector Count rate capacity of FPD (Hz)b F
FPD

¼
ab

P2R
1.8 Ã107 1.8 Ã107

Count rate capacity per site (Hz) N ¼F
FPD

/XY 7.1 Ã104 2.8 Ã102

No. of counter binits K ¼log N Á16 Á8

Read frequency (Hz)c f
r
¼F

FPD
/2K 2.6 Ã102 6.6 Ã104

Binit output frequency (binits sÉ1) I
FPD

¼f
r
K 4.1 Ã103 5.3 Ã105

Spectrometer I
source

in bits (s
x
¼20 mm; F

source
¼1.8 Ã107 Hz) S log(F

source
/S) 4.1 Ã103 5.3 Ã104

I
source

in bits (s
x
¼10 mm; F

source
¼1.8 Ã107 Hz) S log(F

source
/S) 7.7 Ã103 1.6 Ã106

I
source

in bits (s
x
¼10 mm; F

source
¼108 Hz) S log(F

source
/S) 9.0 Ã103 2.2 Ã106

I
source

in bits (s
x
¼5 mm; F

source
¼1010 Hz) S log(F

source
/S) 2.4 Ã104 1.4 Ã107

a The expressions for a 1D array are obtained by setting Y ¼1 andK ¼J.
b This is determined either by the MCP or the detector circuitry (whichever is the lowest). The expression for the MCP limited
rate is given.

gives the minimum read frequency to ensure that all counters are read before any one can fill.c f
r
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Figure 5. Counts measured in 0.5 s as a function of the ion
current. The counts recorded by five detectors were summed to
obtain the counts plotted.

the speciÐcation indicated. It can be seen that the fre-
quencies at which the arrays must be read are attain-
able. Therefore, there is no point making the array with
more than the indicated number of counter binits per
site as this number is sufficient to match the count rate
which is limited by the MCP. However, there may be
good reason to reduce the number of binits per site and
increase (reduce the sample time), as this would allowfrless circuitry, less silicon area and allow lower cost. If fris doubled then K can be reduced by 1. Therefore,
instead of the 256 ] 16 binit counters of a 1D FPD we
could use 8 binit counters if they are read at fr \ 6.6

Hz (i.e. 256] 28 Hz).] 104
The information output by the source is shown in

Table 3 for four combinations of resolution and ion
current. When the spectrum has peaks with lmp

x
\ 5

and a particle Ñux over the area of the FPD of 1010
particles s~1 then the maximum information for a 1D
spectrum is 2.4 ] 104 bits s~1 and for a 2D image

bits s~1. In order to match the spe-Isource\ 1.4] 107
ciÐcation of the FPD, must be increased to 20 lmp

xand the particle Ñux in the focal plane reduced to
1.8] 107 particles s~1 with a loss of a factor of about 6
for the information in the 1D spectrum and a factor of
about 26 of the information in the 2D spectrum.

If the FPD is longer in the direction of dispersion for
a 1D FPD then the information rate capacity is pro-
portionally larger. If the FPD is wider (in the direction
perpendicular to the direction of dispersion) then the
information rate capacity will increase as the logarithm
of the width.

Table 3 indicates that the information rate capacity
of the 2D FPD is more than 100 times greater than that
of the 1D FPD. Similarly, the source information for a
2D image is more than 100 times that for a 1D spec-
trum under the conditions stated. This highlights the
problem of measuring a 1D spectrum with a 2D FPD.
There is no increase in the amount of information when
using the 2D device since there is no dispersion in the Y
direction. is limited by the MCP and the countsFFPDrecorded on Y sites of the 2D device are identical (to a
Ðrst approximation) with those recorded on one detec-
tor of the 1D device. However, there is a penalty
incurred as the read frequency must be more than 100
times greater for the 2D device and the total number of
counter binits needed by Y detectors far exceeds the
number in one detector in the 1D device. This deter-

mines that a large amount of circuitry is needed and
inhibits the production of high-resolution 2D arrays of
particle counters. Where fully parallel 2D data acquisi-
tion is required, integrating devices2,7 such as CCDs are
used, although they are not ideally suited to ion
counting or the one-dimensional slit geometry of spa-
tially dispersive spectrometers.1

By way of illustration, we may ask if a 256 ] 256 2D
array of detectors can be made with a spatial resolution
of 25 lm in both dimensions using an MCP with the
above speciÐcation. From Table 3 we see that such a
device would require about 8 bits per counter, it could
count at a rate of 280 Hz per site and the read fre-
quency would be Hz. Now, it is not pos-fr\ 6.6] 104
sible using present technology to Ðt an 8 binit counter
within an area of 25] 25 lm. If we reduce K by 7 bits
then we must increase by a factor of 27, i.e. 128. Thisfrindicates that the read frequency should be 8.4 MHz.
This is feasible and tells us that for the low particle Ñux
(the value being limited by the MCP) it is possible to
read such a 2D array before any site receives more than
one count. In the spirit of these calculations, one should
anticipate that this Ðgure is an upper limit on the parti-
cle Ñux which can be accurately measured, not least
because the particle Ñux will not normally be uniformly
distributed.

Figure 5 shows results obtained8 using a 1D discrete
detector FPD recently developed at Aberystwyth. A
single ion peak covering Ðve detectors was measured by
varying the ion current and recording the counts for a
Ðxed time (0.5 s). It can be seen that above about 20 fA
the curve begins to deviate strongly from linearity. We
can compare this result with that predicted by the
above equations as follows : a \ 4800 lm, b \ 2000 lm,
P\ 15 lm, R\ 0.01 s, X \ 192 and Y \ 1. Therefore,

Hz, N \ 2.2] 104 Hz\ 3.5] 10~15FFPD \ 4.3 ] 106
A, K \ 14.4 binits and Hz. Thefr \ 2.0 ] 102
Aberystwyth FPD has 8 binits per detector and there-
fore the read frequency is fr \ 2.0] 102] 26.4B 1.67

Hz.] 104
For a single electrode, N \ 3.5 fA and therefore for

Ðve electrodes the count rate limit is roughly Ðve times
this, i.e. 17.5 fA, in reasonable agreement with the
experimental observation of the onset of strong non-
linearity. In Fig. 5, at an ion current of 10 fA (about
6 ] 104 ions s~1) the counts accumulated by the Ðve
detectors in 0.5 s should ideally be about 3] 104. The
observed counts were about 1.7] 104, but better agree-
ment would not be expected because the ions in the
beam were concentrated at the centre of the Ðve elec-
trodes and because of the approximation made in the
model.

CONCLUSIONS

The information available in the focal plane of a spa-
tially dispersive spectrometer has been quantiÐed and
an FPD has been characterized in terms of its ability to
measure the information. It has been assumed that the
spectral peaks have a Gaussian proÐle. The resolving
power, the dynamic range and the size of the FPD are
included in this characterization, in addition to proper-
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ties of the MCP. It has been shown that to ensure spec-
tral peaks are recovered accurately the FWHM of the
spectral peak must be twice the spatial resolution or
more.

The limiting particle Ñux has been calculated. For a
high-resolution discrete FPD this is determined by the

MCP performance. It has been shown that a 2D array
of particle counters places demands on counter size and
read frequency which in some cases be prohibitive. The
model developed is applicable to other types of spectro-
meter and detector.
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APPENDIX

Note on the zero noise model

The assumption is made in the text that in the calcu-
lation of and the argument of the logarithmIsource IFPDis not less than unity :

Isource\ S log
AFsource

S
B

IFPD \ XY log2
AFFPD

XY
B

This assumption is normally valid since both FFPD/XY
and are usually much greater than 1.Fsource/SIn the case of a time-of-Ñight (TOF) mass spectro-
meter, the relevant equation for the information may
have an argument of less than unity and the following
procedure may be used to Ðnd the information output.
We consider the measurement period (T ) of an ion
pulse to be divided into n segments, where n \ 0.8T /p

Tand is the standard deviation of an ion arrival timep
Tpeak (assumed constant). Each pulse of ions normally

contains far fewer ions than the number of time seg-
ments and the probability of two ions arriving in a
single segment after accumulation for 1 s is considered
to be negligible in the following analysis (although the
ions may be bunched together). For N ions per second,
the information is

ITOF\ [(No. of segments

containing 0)log(probability of 0)

[(No. of segments

containing 1)log(probability of 1)

\[0.8T
p
T

(p0 log p0] p1 log p1) bits per pulse

Now,

p1 \ N/n and p0\ 1 [ p1

Therefore

ITOF \ [0.8T
p
T

[(N/n)log(N/n) ] (1 [ N/n)log(1[ N/n)]

\ 0.8T
p
T

)(N/n)

where )(N/n) is called the “binary entropy functionÏ,4
with a maximum of unity at N/n \ 0.5 and zero at
N/n \ 0 or 1 (however, the expression is only valid at
low N/n since it was assumed that there is negligible
probability of more than one count per segment).

may be used to characterize the TOF massITOFspectrometer and the upper limit will be determined by
limits on N/n or If we take N/n \ 0.1, T \ 100 lsp

T
.

and ns, we Ðndp
T

\ 100

ITOF B 3.8] 102 bits s~1

An expression for which includes multiple countsITOFper time segment is easily derived. A similar analysis
can be carried out for the TOF detector.

Model in the presence of noise

If the possibility of noise is considered then the number
of counts received at the destination may not be equal
to the number of incident particles. We deÐne the
source alphabet and the destinationS(a1, a2 , . . . , a

j
)

alphabet where is the source symbolD(b1, b2 , . . . , b
k
), a

jrepresenting the number of particles incident on a
detector and is the destination symbol representingb

kthe number of counts recorded at the destination. We
can regard counts, count up toa1\ 0 a2\ 1 a256 \

counts in the present examples. The mutual infor-255
mation [I(S, D)] is a measure of the average quantity of
information transmitted across the channel per symbol
and is given by

I(S, D)\ H(D) [ HS(D) bits per symbol
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where H(D) is the destination entropy and is theHS(D)
conditional entropy.4,5

The meaning of mutual information can be illustrated
as follows. If there were a 1 :1 correspondence between
the signal sent and the signal received, then all informa-
tion (uncertainty) in D would be due to information in
S. However, if we have a noisy channel then some of the
information in D is lost in the channel. The measure of
the information which is lost is Hence the infor-HS(D).
mation in D which is contained in S is H(D) [ HS(D).
This is called the mutual information I(S, D).

In terms of the probabilities of events, we have

I(S, D) \ [ ;
k/1

T
p
k

log p
k
] ;

j/1

N ;
k/1

T
p
jk

log[p
j
(k)]

Now,

p
jk

\ p
j
(k)p

j
Therefore,

I(S, D) \ [ ;
k/1

T
p
k

log p
k
] ;

j/1

N ;
k/1

T
p
j
p
j
(k)log[p

j
(k)]

where
is the probability of being incident ;p

j
a
jis the probability of measuringp

k
b
k
;

is the joint probability of particles being incidentp
jk

a
jand counts being measured ;b

kis the conditional probability that counts arep
j
(k) b

kmeasured given that particles are incident ;a
jN is the size of the source alphabet ;

T is the size of the destination alphabet (Fig. A1).
With no noise present, then if n particles are incident

a count of n is measured. In this case

N \ T

p
j
(k) \ 1 when j \ k

p
j
(k) \ 0 when j D k

and the second term in the above summation vanishes.
However, if noise is present this may not be the case. As
an example we consider that the source outputs one
symbol per second each symbol of equal probability
(e.g. counts from 0 to 255 with equal probability).

Figure A1. Source (S) and destination (D) alphabets. When the
channel is noisy there may be extra symbols in the destination
alphabet giving a total of T ¿N destination symbols.

Therefore,

p
j
\ 1/N

We also assume that each destination symbol is
received with equal probability :

p
k
\ 1/T

Let

p
j
(k) \ b for j\ k

and

p
j
(k) \ (1 [ b)/(T [ 1) for j D k

i.e. we assume that the probability of correct transmis-
sion of a count is b and the remaining probability (1[ b)
is divided equally between the remaining (T [ 1) desti-
nation symbols. Therefore,

HS(D) \ [ 1
N

Nb log b [ 1
N

(T N[ N)

]
1 [ b
T [ 1

log
A1 [ b
T [ 1

B

\ [b log b [ (1[ b)log
A1 [ b
T [ 1

B

where the Ðrst term refers to the summation for j \ k
and the second to Therefore,j D k.

HS(D) \ b log
A1
b
B

] (1 [ b)log
A 1
1 [ b

B

] (1 [ b)log(T [ 1)

\ )(b) ] (1[ b)log(T [ 1)

where )(b) is the “binary entropy functionÏ,4 with a
maximum of unity at b \ 0.5 and zero at b \ 0 or 1.

We take T \ N \ 256 and consider the following
cases :

Case (a) : b \ 1/256 (equal probability of any destination
symbol regardless of the transmitted symbol, i.e. maximum
noise) :

)(b) \ 8 [ (255/256)log 255

and

(1 [ b)log(T [ 1) \ (255/256)log 255

K HS(D) \ 8

K I(S, D) \ 0 bits per symbol

Case (b) : b \ 1 (zero noise) :

)(b) \ 0 and (1 [ b)log 255 \ 0

K HS(D) \ 0

K I(S, D) \ 8 bits per symbol
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Case (c) : b \ 0.5 (50% probability of correct symbol
reaching destination) :

)(b)\ 1 and (1 [ b)log 255 B 4

K HS(D)B 5

K I(S, D)B 3 bits per symbol

In summary we have :

I(S, D)
(bits per
symbol)

Case (a) b¼1/256 all noise 0
Case (b) b¼1 zero noise 8
Case (c) b¼0.5 50 probability of

correct transmission 3

Note that in case (c) we have only 3 bits of informa-
tion. The source has output 8 bits but 5 bits are lost in
transmission. Therefore, in the presence of this noise,
the FPD will only transfer a fraction of the information
output by the spectrometer, i.e. the value of will beIFPDreduced.

This loss may be understood from another angle. We
consider the receipt of at the destination and ask howb

kmuch of the information transmitted by the source is
received. Figure A2 shows that the received symbol
could result from the transmission of any source symbol
with the probabilities indicated in the present model.

As each of the source symbols is equally likely, the
information transmitted by the source is 8 bits per
symbol. In the present example each destination symbol
is also equally likely (whether there is noise or no noise)
and therefore 8 bits of information are received at the
destination.

Now, for a noiseless channel,

p
j
(k) \ 1 when j \ k

and

p
j
\ 0 when jD k

Figure A2. In this example of noisy transmission there is a 50%
probability that a transmitted symbol will be received correctly at
the destination and an approximately 1/512 probability that one of
the other 255 source symbols could have been transmitted.

and therefore the information due to the channel is

1 log 1 ] ;
255

0 log 0 \ 0 bits

For the noisy channel, however,

p
j
(k) \ 0.5 when j \ k

and

p
j
(k) \ 1/512 when j D k

and therefore the information due to the channel is

0.5 log 0.5 ] ;
255

(1/512)log 512 \ 5 bits

Therefore, only three of the received bits of information
are from the source.

If a more realistic assumption is made that the noise
causes a maximum di†erence of only 2 counts between
the incident particles and the received count, then it can
be shown that the received information is 6 bits per
symbol when b \ 0.5. Other noise can be accommo-
dated in his framework.
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